This commit includes example tutorials and solutions for P4D2 2017. (#29)

- Added example P4 programs for ipv4_forwarding, mri, arp, calc
- Added python code to invoke compiler, start bmv2, run mininet
- Added solutions to above programs
- Added README files that describe exercises
This commit is contained in:
Robert Soulé 2017-05-16 11:38:27 -07:00 committed by Nate Foster
parent 5616d53a1a
commit a78dba7a5a
41 changed files with 4088 additions and 0 deletions

View File

@ -0,0 +1,63 @@
# P4 Tutorial
## Introduction
Welcome to the P4 Tutorial!
We've prepared a set of four exercises that will help you get started
with P4 programming:
1. [L3 forwarding](./ipv4_forward)
2. [Multi-Hop Route Inspection](./mri)
3. [ARP/ICMP Responder](./arp)
4. [Calculator](./calc)
## Obtaining required software
If you are starting this tutorial as part of the P4 Developer Day, then
we've already provided you with a virtual machine that has all of the
required software installed.
Otherwise, to complete the exercises, you will need to clone two p4lang Github repositories
and install their dependencies. To clonde the repositories:
- `git clone https://github.com/p4lang/behavioral-model.git bmv2`
- `git clone https://github.com/p4lang/p4c-bm.git p4c-bmv2`
The first repository ([bmv2](https://github.com/p4lang/behavioral-model)) is the
second version of the behavioral model. It is a C++ software switch that will
behave according to your P4 program. The second repository
([p4c-bmv2](https://github.com/p4lang/p4c-bm)) is the compiler for the
behavioral model: it takes P4 program and output a JSON file which can be loaded
by the behavioral model.
Each of these repositories come with dependencies. `p4c-bmv2` is a Python
repository and installing the required Python dependencies is very easy to do
using `pip`: `sudo pip install -r requirements.txt`.
`bmv2` is a C++ repository and has more external dependencies. They are listed
in the
[README](https://github.com/p4lang/behavioral-model/blob/master/README.md). If
you are running Ubuntu 14.04+, the dependencies should be easy to install (you
can use the `install_deps.sh` script that comes with `bmv2`). Do not forget to
build the code once all the dependencies have been installed:
```
$ ./autogen.sh
$ ./configure
$ make
```
You will also need to install `mininet`, as well as the following Python
packages: `scapy`, `thrift` (>= 0.9.2) and `networkx`. On Ubuntu, it would look
like this:
```
$ sudo apt-get install mininet
$ sudo pip install scapy thrift networkx
```

View File

@ -0,0 +1,174 @@
# Implementing an ARP/ICMP Responder
## Introduction
This exercise extends the [IPv4 Forwarding](../ipv4_forward) program to
allow your switches to respond to ARP and ICMP requests. Once implemented,
your hosts will be able to `ping` other hosts connected to the switch, and
have the switch respond.
This exercise makes several simplifying assumptions:
1. The network topology contains exactly one switch and two hosts.
1. ARP and ICMP requests to the hosts are ignored; only requests sent to the
switch receive responses.
Implementing the full functionality of ARP and ICMP is straightforward but
beyond the scope of this tutorial and left as an exercise to the reader.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`arp.p4`, which initially drops all packets. Your job will be to
extend it to reply to ARP and ICMP requests.
As a first step, compile the incomplete `arp.p4` and bring up a
switch in Mininet to test its behavior.
1. In your shell, run:
```bash
./run.sh
```
This will:
* compile `arp.p4`, and
* start a Mininet instance with one switch (`s1`) connected to two hosts (`h1`, `h2`).
* The hosts are assigned IPs of `10.0.1.10` and `10.0.2.10`.
2. Once the P4 source compiles without error, you can test your program at the
mininet prompt using the `ping` utility.
``` mininet> h1 ping h2 ```
Once the program is implemented correctly, you will see a response to the
ping in the mininet window.
3. Type `exit` in the mininet terminal to exit.
### A note about the control plane
P4 programs define a packet-processing pipeline, but the rules governing packet
processing are inserted into the pipeline by the control plane. When a rule
matches a packet, its action is invoked with parameters supplied by the control
plane as part of the rule.
In this exercise, the control plane logic has already been implemented. As
part of bringing up the Mininet instance, the `run.sh` script will install
packet-processing rules in the tables of each switch. These are defined in the
`simple_router.config` file.
## Step 2: Implement ARP/ICMP Replies
In this exercise, we are using entries in the `ipv4_lpm` table as a
database, which we can reference when responding to ARP and ICMP requests.
Without the proper entries in the table, the solution will not work.
From a high-level, the task involves implementing two main components: ARP
replies and ICMP replies.
### ARP Reply
When the switch receives and ARP request asking to resolve the switch's IP
address, it will need to perform the following actions:
1. Swap the source and destination MAC addresses in the Ethernet header,
1. set the ARP operation to ARP_REPLY (`2`) in the ARP header,
1. update the sender hardware address (SHA) and sender protocol address (SPA) in the ARP header to
be the MAC and IP addresses of the switch, and
1. set the target hardware address (THA) and target protocol address (TPA) to be the SHA
and SPA of the arriving ARP packet.
### ICMP Reply
When the switch receives and ICMP request containing the switch's IP and MAC
addresses, it will need to perform the following actions:
1. Swap the source and destination MAC addresses in the Ethernet header,
1. swap the source and destination IP addresses in the ICMP header, and
1. set the type field in the ICMP header to `ICMP_ECHO_REPLY` (`0`).
1. To simplify the exercise, we can ignore the checksum by setting to checksum
field to 0.
We have provided a skeleton `arp.p4` file to get you started. In this
file, places to modify are marked by `TODO`.
There are, of course, different possible solutions. We describe one approach
below. It builds on the [IPv4 Forwarding](../ipv4_forward) solution, which
used the table `ipv4_lpm` for L3 forwarding, by adding a second table named
`forward`, which checks if a packet is an ARP or ICMP packet and invokes
actions to send an ARP reply, forward an IPv4 packet, or send an ICMP reply.
Broadly speaking, a complete solution will contain the following components:
1. Header type definitions for `ethernet_t`, `arp_t`, `ipv4_t`, and `icmp_t`.
1. A structure (named `my_metadata_t` in `arp.p4`) with metadata fields for the
packet's souce and destination MAC addresses, IPv4 address, egress port, as
well as a hard-coded MAC address for the switch.
1. **TODO:** Parsers for Ethernet, ARP, IPv4, and ICMP packet header types.
1. **TODO:** A control type declaration for ingress processing, containing:
1. An action for `drop`.
1. An action (named `ipv4_forward`) to store information in the metadata
structure, rather than immediately writing to the packet header.
1. A table (named `ipv4_lpm`) that will match on the destination IP address
and invoke the `ipv4_forward` action.
1. An action to send an ICMP reply.
1. An action to send an ARP reply.
1. A table (named `forward`) that will forward IPv4 packets, send an ARP
reply, send an ICMP reply, or drop a packet.
1. An `apply` block that implements the control logic to invoke the two
tables.
1. A deparser that emits headers in the proper order.
To keep the exercise simple, we will ignore the `ipv4_checksum`. You should not
need any control plane rules for this exercise.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, you should be able to
successfully `ping` the switch.
### Troubleshooting
There are several ways that problems might manifest:
1. `arp.p4` fails to compile. In this case, `run.sh` will report the
error emitted from the compiler and stop.
1. `arp.p4` compiles, but the switch does not process packets in the desired
way. The `build/logs/<switch-name>.log` files contain trace messages
describing how each switch processes each packet. The output is detailed and
can help pinpoint logic errors in your implementation.
> Note that there are no control plane rules installed in this example, and so
> the `receive.py` and `send.py` scripts from the [IPv4
> Forwarding](../ipv4_forward) example will not work.
#### Cleaning up Mininet
In the latter case above, `run.sh` may leave a Mininet instance running in
the background. Use the following command to clean up these instances:
```bash
mn -c
```
## Next Steps
Congratulations, your implementation works! Move on to the next exercise:
turning your switch into a [Calculator](../calc).

View File

@ -0,0 +1,232 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
/*************************************************************************
*********************** C O N S T A N T S *****************************
*************************************************************************/
/* Define the useful global constants for your program */
const bit<16> ETHERTYPE_IPV4 = 0x0800;
const bit<16> ETHERTYPE_ARP = 0x0806;
const bit<8> IPPROTO_ICMP = 0x01;
/*************************************************************************
*********************** H E A D E R S *********************************
*************************************************************************/
/* Define the headers the program will recognize */
/*
* Standard ethernet header
*/
typedef bit<48> mac_addr_t;
typedef bit<32> ipv4_addr_t;
typedef bit<9> port_id_t;
header ethernet_t {
mac_addr_t dstAddr;
mac_addr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ipv4_addr_t srcAddr;
ipv4_addr_t dstAddr;
}
const bit<16> ARP_HTYPE_ETHERNET = 0x0001;
const bit<16> ARP_PTYPE_IPV4 = 0x0800;
const bit<8> ARP_HLEN_ETHERNET = 6;
const bit<8> ARP_PLEN_IPV4 = 4;
const bit<16> ARP_OPER_REQUEST = 1;
const bit<16> ARP_OPER_REPLY = 2;
header arp_t {
bit<16> htype;
bit<16> ptype;
bit<8> hlen;
bit<8> plen;
bit<16> oper;
}
header arp_ipv4_t {
mac_addr_t sha;
ipv4_addr_t spa;
mac_addr_t tha;
ipv4_addr_t tpa;
}
const bit<8> ICMP_ECHO_REQUEST = 8;
const bit<8> ICMP_ECHO_REPLY = 0;
header icmp_t {
bit<8> type;
bit<8> code;
bit<16> checksum;
}
/* Assemble headers in a single struct */
struct my_headers_t {
ethernet_t ethernet;
arp_t arp;
arp_ipv4_t arp_ipv4;
ipv4_t ipv4;
icmp_t icmp;
}
/*************************************************************************
*********************** M E T A D A T A *******************************
*************************************************************************/
/* Define the global metadata for your program */
struct my_metadata_t {
ipv4_addr_t dst_ipv4;
mac_addr_t mac_da;
mac_addr_t mac_sa;
port_id_t egress_port;
mac_addr_t my_mac;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(
packet_in packet,
out my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
ETHERTYPE_IPV4 : parse_ipv4;
ETHERTYPE_ARP : parse_arp;
default : accept;
}
}
state parse_arp {
/*
* TODO: parse ARP. If the ARP protocol field is
* IPV4, transtion to parse_arp_ipv4
*/
transition accept;
}
state parse_arp_ipv4 {
/*
* TODO: parse ARP_IPV4. Hint: one
* possible solution is to store the
* target packet address in a meta data
* field when parsing.
*/
transition accept;
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
meta.dst_ipv4 = hdr.ipv4.dstAddr;
transition select(hdr.ipv4.protocol) {
IPPROTO_ICMP : parse_icmp;
default : accept;
}
}
state parse_icmp {
/* TODO: parse ICMP */
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(
in my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
action drop() {
mark_to_drop();
exit;
}
/* TODO: Define actions and tables here */
table ipv4_lpm {
key = { meta.dst_ipv4 : lpm; }
actions = { /* TODO: add actions */ drop; }
default_action = drop();
}
apply {
meta.my_mac = 0x000102030405;
ipv4_lpm.apply();
/* TODO: add contol logic */
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(
inout my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(
packet_out packet,
in my_headers_t hdr)
{
apply {
/* TODO: Implement deparser */
}
}
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@ -0,0 +1,10 @@
{
"program": "arp.p4",
"language": "p4-16",
"targets": {
"mininet": {
"num-hosts": 2,
"switch-config": "simple_router.config"
}
}
}

5
P4D2_2017/exercises/arp/run.sh Executable file
View File

@ -0,0 +1,5 @@
P4APPRUNNER=../../utils/p4apprunner.py
mkdir -p build
tar -czf build/p4app.tgz * --exclude='build'
#cd build
sudo python $P4APPRUNNER p4app.tgz --build-dir ./build

View File

@ -0,0 +1 @@
table_add ipv4_lpm set_dst_info 10.0.1.10/24 => 00:00:01:00:00:01 00:00:02:00:00:02 1

View File

@ -0,0 +1,305 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
/*************************************************************************
*********************** C O N S T A N T S *****************************
*************************************************************************/
/* Define the useful global constants for your program */
const bit<16> ETHERTYPE_IPV4 = 0x0800;
const bit<16> ETHERTYPE_ARP = 0x0806;
const bit<8> IPPROTO_ICMP = 0x01;
/*************************************************************************
*********************** H E A D E R S *********************************
*************************************************************************/
/* Define the headers the program will recognize */
/*
* Standard ethernet header
*/
typedef bit<48> mac_addr_t;
typedef bit<32> ipv4_addr_t;
typedef bit<9> port_id_t;
header ethernet_t {
mac_addr_t dstAddr;
mac_addr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ipv4_addr_t srcAddr;
ipv4_addr_t dstAddr;
}
const bit<16> ARP_HTYPE_ETHERNET = 0x0001;
const bit<16> ARP_PTYPE_IPV4 = 0x0800;
const bit<8> ARP_HLEN_ETHERNET = 6;
const bit<8> ARP_PLEN_IPV4 = 4;
const bit<16> ARP_OPER_REQUEST = 1;
const bit<16> ARP_OPER_REPLY = 2;
header arp_t {
bit<16> htype;
bit<16> ptype;
bit<8> hlen;
bit<8> plen;
bit<16> oper;
}
header arp_ipv4_t {
mac_addr_t sha;
ipv4_addr_t spa;
mac_addr_t tha;
ipv4_addr_t tpa;
}
const bit<8> ICMP_ECHO_REQUEST = 8;
const bit<8> ICMP_ECHO_REPLY = 0;
header icmp_t {
bit<8> type;
bit<8> code;
bit<16> checksum;
}
/* Assemble headers in a single struct */
struct my_headers_t {
ethernet_t ethernet;
arp_t arp;
arp_ipv4_t arp_ipv4;
ipv4_t ipv4;
icmp_t icmp;
}
/*************************************************************************
*********************** M E T A D A T A *******************************
*************************************************************************/
/* Define the global metadata for your program */
struct my_metadata_t {
ipv4_addr_t dst_ipv4;
mac_addr_t mac_da;
mac_addr_t mac_sa;
port_id_t egress_port;
mac_addr_t my_mac;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(
packet_in packet,
out my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
ETHERTYPE_IPV4 : parse_ipv4;
ETHERTYPE_ARP : parse_arp;
default : accept;
}
}
state parse_arp {
packet.extract(hdr.arp);
transition select(hdr.arp.htype, hdr.arp.ptype,
hdr.arp.hlen, hdr.arp.plen) {
(ARP_HTYPE_ETHERNET, ARP_PTYPE_IPV4,
ARP_HLEN_ETHERNET, ARP_PLEN_IPV4) : parse_arp_ipv4;
default : accept;
}
}
state parse_arp_ipv4 {
packet.extract(hdr.arp_ipv4);
meta.dst_ipv4 = hdr.arp_ipv4.tpa;
transition accept;
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
meta.dst_ipv4 = hdr.ipv4.dstAddr;
transition select(hdr.ipv4.protocol) {
IPPROTO_ICMP : parse_icmp;
default : accept;
}
}
state parse_icmp {
packet.extract(hdr.icmp);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(
in my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
action drop() {
mark_to_drop();
exit;
}
action set_dst_info(mac_addr_t mac_da,
mac_addr_t mac_sa,
port_id_t egress_port)
{
meta.mac_da = mac_da;
meta.mac_sa = mac_sa;
meta.egress_port = egress_port;
}
table ipv4_lpm {
key = { meta.dst_ipv4 : lpm; }
actions = { set_dst_info; drop; }
default_action = drop();
}
action forward_ipv4() {
hdr.ethernet.dstAddr = meta.mac_da;
hdr.ethernet.srcAddr = meta.mac_sa;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
standard_metadata.egress_spec = meta.egress_port;
}
action send_arp_reply() {
hdr.ethernet.dstAddr = hdr.arp_ipv4.sha;
hdr.ethernet.srcAddr = meta.mac_da;
hdr.arp.oper = ARP_OPER_REPLY;
hdr.arp_ipv4.tha = hdr.arp_ipv4.sha;
hdr.arp_ipv4.tpa = hdr.arp_ipv4.spa;
hdr.arp_ipv4.sha = meta.mac_da;
hdr.arp_ipv4.spa = meta.dst_ipv4;
standard_metadata.egress_spec = standard_metadata.ingress_port;
}
action send_icmp_reply() {
mac_addr_t tmp_mac;
ipv4_addr_t tmp_ip;
tmp_mac = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = hdr.ethernet.srcAddr;
hdr.ethernet.srcAddr = tmp_mac;
tmp_ip = hdr.ipv4.dstAddr;
hdr.ipv4.dstAddr = hdr.ipv4.srcAddr;
hdr.ipv4.srcAddr = tmp_ip;
hdr.icmp.type = ICMP_ECHO_REPLY;
hdr.icmp.checksum = 0; // For now
standard_metadata.egress_spec = standard_metadata.ingress_port;
}
table forward {
key = {
hdr.arp.isValid() : exact;
hdr.arp.oper : ternary;
hdr.arp_ipv4.isValid() : exact;
hdr.ipv4.isValid() : exact;
hdr.icmp.isValid() : exact;
hdr.icmp.type : ternary;
}
actions = {
forward_ipv4;
send_arp_reply;
send_icmp_reply;
drop;
}
const default_action = drop();
const entries = {
( true, ARP_OPER_REQUEST, true, false, false, _ ) :
send_arp_reply();
( false, _, false, true, false, _ ) :
forward_ipv4();
( false, _, false, true, true, ICMP_ECHO_REQUEST ) :
send_icmp_reply();
}
}
apply {
meta.my_mac = 0x000102030405;
ipv4_lpm.apply();
forward.apply();
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(
inout my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(
packet_out packet,
in my_headers_t hdr)
{
apply {
packet.emit(hdr.ethernet);
/* ARP Case */
packet.emit(hdr.arp);
packet.emit(hdr.arp_ipv4);
/* IPv4 case */
packet.emit(hdr.ipv4);
packet.emit(hdr.icmp);
}
}
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@ -0,0 +1,115 @@
# Implementing a P4 Calculator
## Introduction
The objective of this tutorial is to implement a basic calculator
using a custom protocol header written in P4. The header will contain
an operation to perform and two operands. When a switch receives a
calculator packet header, it will execute the operation on the
operands, and return the result to the sender.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`calc.p4`, which initially drops all packets. Your job will be to
extend it to properly implement the calculator logic.
As a first step, compile the incomplete `calc.p4` and bring up a
switch in Mininet to test its behavior.
1. In your shell, run:
```bash
./run.sh
```
This will:
* compile `calc.p4`, and
* start a Mininet instance with one switches (`s1`) connected to two hosts (`h1`, `h2`).
* The hosts are assigned IPs of `10.0.1.10` and `10.0.2.10`.
2. We've written a small Python-based driver program that will allow you
to test your calculator. You can run the driver program directly from the
Mininet command prompt:
```
mininet> h1 python calc.py
>
```
3. The driver program will provide a new prompt, at which you can type
basic expressions. The test harness will parse your expression, and prepare
a packet with the corresponding operator and operands. It will then send a packet
to the switch for evaluation. When the switch returns the result of the computation,
the test program will print the result. However, because the calculator program
is not implemented, you should see an error message.
```
> 1+1
Didn't receive response
>
```
## Step 2: Implement Calculator
To implement the calculator, you will need to define a custom
calculator header, and implement the switch logic to parse header,
perform the requested operation, write the result in the header, and
return the packet to the sender.
We will use the following header format:
0 1 2 3
+----------------+----------------+----------------+---------------+
| P | 4 | Version | Op |
+----------------+----------------+----------------+---------------+
| Operand A |
+----------------+----------------+----------------+---------------+
| Operand B |
+----------------+----------------+----------------+---------------+
| Result |
+----------------+----------------+----------------+---------------+
- P is an ASCII Letter 'P' (0x50)
- 4 is an ASCII Letter '4' (0x34)
- Version is currently 0.1 (0x01)
- Op is an operation to Perform:
- '+' (0x2b) Result = OperandA + OperandB
- '-' (0x2d) Result = OperandA - OperandB
- '&' (0x26) Result = OperandA & OperandB
- '|' (0x7c) Result = OperandA | OperandB
- '^' (0x5e) Result = OperandA ^ OperandB
We will assume that the calculator header is carried over Ethernet, and
we will use the Ethernet type 0x1234 to indicate the presence of the header.
Given what you have learned so far, your task is to implement the
P4 calculator program. There is no control plane logic, so you need
only worry about the data plane implementation.
A working calculator implementation will parse the custom headers,
execute the mathematical operation, write the result in the result field,
and return the packet to the sender.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, you should see the
correct result:
```
> 1+1
2
>
```
If all of this works well. Congratulations! You have finished this
tutorial.

View File

@ -0,0 +1,127 @@
/* -*- P4_16 -*- */
/*
* P4 Calculator
*
* This program implements a simple protocol. It can be carried over Ethernet
* (Ethertype 0x1234).
*
* The Protocol header looks like this:
*
* 0 1 2 3
* +----------------+----------------+----------------+---------------+
* | P | 4 | Version | Op |
* +----------------+----------------+----------------+---------------+
* | Operand A |
* +----------------+----------------+----------------+---------------+
* | Operand B |
* +----------------+----------------+----------------+---------------+
* | Result |
* +----------------+----------------+----------------+---------------+
*
* P is an ASCII Letter 'P' (0x50)
* 4 is an ASCII Letter '4' (0x34)
* Version is currently 0.1 (0x01)
* Op is an operation to Perform:
* '+' (0x2b) Result = OperandA + OperandB
* '-' (0x2d) Result = OperandA - OperandB
* '&' (0x26) Result = OperandA & OperandB
* '|' (0x7c) Result = OperandA | OperandB
* '^' (0x5e) Result = OperandA ^ OperandB
*
* The device receives a packet, performs the requested operation, fills in the
* result and sends the packet back out of the same port it came in on, while
* swapping the source and destination addresses.
*
* If an unknown operation is specified or the header is not valid, the packet
* is dropped
*/
#include <core.p4>
#include <v1model.p4>
/*
* Define the headers the program will recognize
*/
struct my_headers_t {
/* TODO: fill this in */
}
struct my_metadata_t {
/* In our case it is empty */
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(
packet_in packet,
out my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
state start { transition accept; }
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(
in my_headers_t hdr,
inout my_metadata_t meta)
{
apply {
}
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
apply { }
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(
inout my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(
packet_out packet,
in my_headers_t hdr)
{
apply { }
}
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@ -0,0 +1,95 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
import re
from scapy.all import sendp, send, srp1
from scapy.all import Packet, hexdump
from scapy.all import Ether, StrFixedLenField, XByteField, IntField
from scapy.all import bind_layers
class P4calc(Packet):
name = "P4calc"
fields_desc = [ StrFixedLenField("P", "P", length=1),
StrFixedLenField("Four", "4", length=1),
XByteField("version", 0x01),
StrFixedLenField("op", "+", length=1),
IntField("operand_a", 0),
IntField("operand_b", 0),
IntField("result", 0xDEADBABE)]
bind_layers(Ether, P4calc, type=0x1234)
class NumParseError(Exception):
pass
class OpParseError(Exception):
pass
class Token:
def __init__(self,type,value = None):
self.type = type
self.value = value
def num_parser(s, i, ts):
pattern = "^\s*([0-9]+)\s*"
match = re.match(pattern,s[i:])
if match:
ts.append(Token('num', match.group(1)))
return i + match.end(), ts
raise NumParseError('Expected number literal.')
def op_parser(s, i, ts):
pattern = "^\s*([-+&|^])\s*"
match = re.match(pattern,s[i:])
if match:
ts.append(Token('num', match.group(1)))
return i + match.end(), ts
raise NumParseError("Expected binary operator '-', '+', '&', '|', or '^'.")
def make_seq(p1, p2):
def parse(s, i, ts):
i,ts2 = p1(s,i,ts)
return p2(s,i,ts2)
return parse
def main():
p = make_seq(num_parser, make_seq(op_parser,num_parser))
s = ''
iface = 'h1-eth0'
while True:
s = str(raw_input('> '))
if s == "quit":
break
print s
try:
i,ts = p(s,0,[])
pkt = Ether(dst='00:04:00:00:00:00', type=0x1234) / P4calc(op=ts[1].value,
operand_a=int(ts[0].value),
operand_b=int(ts[2].value))
#pkt.show()
resp = srp1(pkt, iface=iface, timeout=1, verbose=False)
if resp:
p4calc=resp[P4calc]
if p4calc:
print p4calc.result
else:
print "cannot find P4calc header in the packet"
else:
print "Didn't receive response"
except Exception as error:
print error
if __name__ == '__main__':
main()

View File

@ -0,0 +1,10 @@
{
"program": "calc.p4",
"language": "p4-16",
"targets": {
"mininet": {
"num-hosts": 2,
"switch-config": "simple_router.config"
}
}
}

View File

@ -0,0 +1,5 @@
P4APPRUNNER=../../utils/p4apprunner.py
mkdir -p build
tar -czf build/p4app.tgz * --exclude='build'
#cd build
sudo python $P4APPRUNNER p4app.tgz --build-dir ./build

View File

@ -0,0 +1,263 @@
/* -*- P4_16 -*- */
/*
* P4 Calculator
*
* This program implements a simple protocol. It can be carried over Ethernet
* (Ethertype 0x1234).
*
* The Protocol header looks like this:
*
* 0 1 2 3
* +----------------+----------------+----------------+---------------+
* | P | 4 | Version | Op |
* +----------------+----------------+----------------+---------------+
* | Operand A |
* +----------------+----------------+----------------+---------------+
* | Operand B |
* +----------------+----------------+----------------+---------------+
* | Result |
* +----------------+----------------+----------------+---------------+
*
* P is an ASCII Letter 'P' (0x50)
* 4 is an ASCII Letter '4' (0x34)
* Version is currently 0.1 (0x01)
* Op is an operation to Perform:
* '+' (0x2b) Result = OperandA + OperandB
* '-' (0x2d) Result = OperandA - OperandB
* '&' (0x26) Result = OperandA & OperandB
* '|' (0x7c) Result = OperandA | OperandB
* '^' (0x5e) Result = OperandA ^ OperandB
*
* The device receives a packet, performs the requested operation, fills in the
* result and sends the packet back out of the same port it came in on, while
* swapping the source and destination addresses.
*
* If an unknown operation is specified or the header is not valid, the packet
* is dropped
*/
#include <core.p4>
#include <v1model.p4>
/*
* Define the headers the program will recognize
*/
/*
* Standard ethernet header
*/
header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;
}
/*
* This is a custom protocol header for the calculator. We'll use
* ethertype 0x1234 for is (see parser)
*/
const bit<16> P4CALC_ETYPE = 0x1234;
const bit<8> P4CALC_P = 0x50; // 'P'
const bit<8> P4CALC_4 = 0x34; // '4'
const bit<8> P4CALC_VER = 0x01; // v0.1
const bit<8> P4CALC_PLUS = 0x2b; // '+'
const bit<8> P4CALC_MINUS = 0x2d; // '-'
const bit<8> P4CALC_AND = 0x26; // '&'
const bit<8> P4CALC_OR = 0x7e; // '|'
const bit<8> P4CALC_CARET = 0x5e; // '^'
header p4calc_t {
bit<8> p;
bit<8> four;
bit<8> ver;
bit<8> op;
bit<32> operand_a;
bit<32> operand_b;
bit<32> res;
}
/*
* All headers, used in the program needs to be assembed into a single struct.
* We only need to declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct my_headers_t {
ethernet_t ethernet;
p4calc_t p4calc;
}
/*
* All metadata, globally used in the program, also needs to be assembed
* into a single struct. As in the case of the headers, we only need to
* declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct my_metadata_t {
/* In our case it is empty */
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(
packet_in packet,
out my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
P4CALC_ETYPE : check_p4calc;
default : accept;
}
}
state check_p4calc {
transition select(packet.lookahead<p4calc_t>().p,
packet.lookahead<p4calc_t>().four,
packet.lookahead<p4calc_t>().ver) {
(P4CALC_P, P4CALC_4, P4CALC_VER) : parse_p4calc;
default : accept;
}
}
state parse_p4calc {
packet.extract(hdr.p4calc);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(
in my_headers_t hdr,
inout my_metadata_t meta)
{
apply {
}
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata)
{
action send_back(bit<32> result) {
bit<48> tmp;
/* Put the result back in */
hdr.p4calc.res = result;
/* Swap the MAC addresses */
tmp = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = hdr.ethernet.srcAddr;
hdr.ethernet.srcAddr = tmp;
/* Send the packet back to the port it came from */
standard_metadata.egress_spec = standard_metadata.ingress_port;
}
action operation_add() {
send_back(hdr.p4calc.operand_a + hdr.p4calc.operand_b);
}
action operation_sub() {
send_back(hdr.p4calc.operand_a - hdr.p4calc.operand_b);
}
action operation_and() {
send_back(hdr.p4calc.operand_a & hdr.p4calc.operand_b);
}
action operation_or() {
send_back(hdr.p4calc.operand_a | hdr.p4calc.operand_b);
}
action operation_xor() {
send_back(hdr.p4calc.operand_a ^ hdr.p4calc.operand_b);
}
action operation_drop() {
mark_to_drop();
}
table calculate {
key = {
hdr.p4calc.op : exact;
}
actions = {
operation_add;
operation_sub;
operation_and;
operation_or;
operation_xor;
operation_drop;
}
const default_action = operation_drop();
const entries = {
P4CALC_PLUS : operation_add();
P4CALC_MINUS: operation_sub();
P4CALC_AND : operation_and();
P4CALC_OR : operation_or();
P4CALC_CARET: operation_xor();
}
}
apply {
if (hdr.p4calc.isValid()) {
calculate.apply();
} else {
operation_drop();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(
inout my_headers_t hdr,
inout my_metadata_t meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(
inout my_headers_t hdr,
inout my_metadata_t meta)
{
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(
packet_out packet,
in my_headers_t hdr)
{
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.p4calc);
}
}
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@ -0,0 +1,156 @@
# Implementing L3 Forwarding
## Introduction
The objective of this tutorial is to implement basic L3 forwarding. To
keep the exercise small, we will just implement forwarding for IPv4.
With IPv4 forwarding, the switch must perform the following actions
for every packet: (i) update the source and destination MAC addresses,
(ii) decrement the time-to-live (TTL) in the IP header, and (iii)
forward the packet out the appropriate port.
Your switch will have a single table, which the control plane will
populate with static rules. Each rule will map an IP address to the
MAC address and output port for the next hop. We have already defined
the control plane rules, so you only need to implement the data plane
logic of your P4 program.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`ipv4_forward.p4`, which initially drops all packets. Your job (in the next
step) will be to extend it to properly forward IPv4 packets.
Before that, let's compile the incomplete `ip4v_forward.p4` and bring up a
switch in Mininet to test its behavior.
1. In your shell, run:
```bash
./run.sh
```
This will:
* compile `ip4v_forward.p4`, and
* start a Mininet instance with three switches (`s1`, `s2`, `s3`) configured
in a triangle, each connected to one host (`h1`, `h2`, `h3`).
* The hosts are assigned IPs of `10.0.1.10`, `10.0.2.10`, etc.
2. You should now see a Mininet command prompt. Open two terminals for `h1` and `h2`, respectively:
```bash
mininet> xterm h1 h2
```
3. Each host includes a small Python-based messaging client and server. In `h2`'s xterm, start the server:
```bash
./receive.py
```
4. In `h1`'s xterm, send a message from the client:
```bash
./send.py 10.0.2.10 "P4 is cool"
```
The message will not be received.
5. Type `exit` to leave each xterm and the Mininet command line.
The message was not received because each switch is programmed with
`ip4v_forward.p4`, which drops all packets on arrival. Your job is to extend
this file.
### A note about the control plane
P4 programs define a packet-processing pipeline, but the rules governing packet
processing are inserted into the pipeline by the control plane. When a rule
matches a packet, its action is invoked with parameters supplied by the control
plane as part of the rule.
In this exercise, the control plane logic has already been implemented. As
part of bringing up the Mininet instance, the `run.sh` script will install
packet-processing rules in the tables of each switch. These are defined in the
`sX-commands.txt` files, where `X` corresponds to the switch number.
**Important:** A P4 program also defines the interface between the switch
pipeline and control plane. The `sX-commands.txt` files contain lists of
commands for the BMv2 switch API. These commands refer to specific tables,
keys, and actions by name, and any changes in the P4 program that add or rename
tables, keys, or actions will need to be reflected in these command files.
## Step 2: Implement L3 forwarding
The `ipv4_forward.p4` file contains a skeleton P4 program with key pieces of
logic replaced by `TODO` comments. These should guide your
implementation---replace each `TODO` with logic implementing the missing piece.
A complete `ipv4_forward.p4` will contain the following components:
1. Header type definitions for Ethernet (`ethernet_t`) and IPv4 (`ipv4_t`).
2. **TODO:** Parsers for Ethernet and IPv4 that populate `ethernet_t` and `ipv4_t` fields.
3. An action to drop a packet, using `mark_to_drop()`.
4. **TODO:** An action (called `ipv4_forward`), which will:
1. Set the egress port for the next hop.
2. Update the ethernet destination address with the address of the next hop.
3. Update the ethernet source address with the address of the switch.
4. Decrement the TTL.
5. **TODO:** A control that:
1. Defines a table that will read an IPv4 destination address, and
invoke either `drop` or `ipv4_forward`.
1. An `apply` block that applies the table.
7. A deparser that selects the order in which fields inserted into the outgoing
packet.
8. A `package` instantiation supplied with the parser, control, and deparser.
> In general, a package also requires instances of checksum verification
> and recomputation controls. These are not necessary for this tutorial
> and are replaced with instantiations of empty controls.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, your message from `h1` should
be delivered to `h2`.
### Food for thought
The "test suite" for your solution---sending a message from `h1` to `h2`---is
not very robust. What else should you test to be confident of your
implementation?
> Although the Python `scapy` library is outside the scope of this tutorial,
> it can be used to generate packets for testing. The `send.py` file shows how
> to use it.
Other questions to consider:
- How would you enhance your program to support next hops?
- Is this program enough to replace a router? What's missing?
### Troubleshooting
There are several ways that problems might manifest:
1. `ipv4_forward.p4` fails to compile. In this case, `run.sh` will report the
error emitted from the compiler and stop.
2. `ipv4_forward.p4` compiles but does not support the control plane rules in
the `sX-commands.txt` files that `run.sh` tries to install using the BMv2 CLI.
In this case, `run.sh` will report these errors to `stderr`. Use these error
messages to fix your `ipv4_forward.p4` implementation.
3. `ipv4_forward.p4` compiles, and the control plane rules are installed, but
the switch does not process packets in the desired way. The
`build/logs/<switch-name>.log` files contain trace messages describing how each
switch processes each packet. The output is detailed and can help pinpoint
logic errors in your implementation.
#### Cleaning up Mininet
In the latter two cases above, `run.sh` may leave a Mininet instance running in
the background. Use the following command to clean up these instances:
```bash
mn -c
```
## Next Steps
Congratulations, your implementation works! Move on to the next exercise:
implementing basic network telemetry [Multi-Hop Route Inspection](../mri).

View File

@ -0,0 +1,170 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<16> TYPE_IPV4 = 0x800;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
/* empty */
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser ParserImpl(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
/* TODO: add transition to parsing ethernet */
transition accept;
}
state parse_ethernet {
/* TODO: add parsing ethernet */
}
state parse_ipv4 {
/* TODO: add parsing ipv4 */
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control verifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control ingress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
/* This action will drop packets */
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
/*
* TODO: Implement the logic to:
* 1. Set the standard_metadata.egress_spec to the output port.
* 2. Set the ethernet srcAddr to the ethernet dstAddr.
* 3. Set the ethernet dstAddr to the dstAddr passed as a parameter.
* 4. Decrement the IP TTL.
* BONUS: Handle the case where TTL is 0.
*/
}
table ipv4_lpm {
key = {
/* TODO: declare that the table will do a longest-prefix match (lpm)
on the IP destination address. */
}
actions = {
/* TODO: declare the possible actions: ipv4_forward or drop. */
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
/* TODO: replace drop with logic to:
* 1. Check if the ipv4 header is valid.
* 2. apply the table ipv4_lpm.
*/
drop();
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control egress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control computeChecksum(
inout headers hdr,
inout metadata meta)
{
/*
* Ignore checksum for now. The reference solution contains a checksum
* implementation.
*/
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control DeparserImpl(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
ParserImpl(),
verifyChecksum(),
ingress(),
egress(),
computeChecksum(),
DeparserImpl()
) main;

View File

@ -0,0 +1,33 @@
{
"program": "ipv4_forward.p4",
"language": "p4-16",
"targets": {
"multiswitch": {
"auto-control-plane": true,
"cli": true,
"pcap_dump": true,
"bmv2_log": true,
"links": [["h1", "s1"], ["s1", "s2"], ["s1", "s3"], ["s3", "s2"], ["s2", "h2"], ["s3", "h3"]],
"hosts": {
"h1": {
},
"h2": {
},
"h3": {
}
},
"switches": {
"s1": {
"entries": "s1-commands.txt"
},
"s2": {
"entries": "s2-commands.txt"
},
"s3": {
"entries": "s3-commands.txt"
}
}
}
}
}

View File

@ -0,0 +1,50 @@
#!/usr/bin/env python
import sys
import struct
from scapy.all import sniff, sendp, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import ShortField, IntField, LongField, BitField, FieldListField, FieldLenField
from scapy.all import IP, UDP, Raw
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
class IPOption_MRI(IPOption):
name = "MRI"
option = 31
fields_desc = [ _IPOption_HDR,
FieldLenField("length", None, fmt="B",
length_of="swids",
adjust=lambda pkt,l:l+4),
ShortField("count", 0),
FieldListField("swids",
[],
IntField("", 0),
length_from=lambda pkt:pkt.count*4) ]
def handle_pkt(pkt):
print "got a packet"
pkt.show2()
# hexdump(pkt)
sys.stdout.flush()
def main():
iface = 'h2-eth0'
print "sniffing on %s" % iface
sys.stdout.flush()
sniff(filter="udp and port 4321", iface = iface,
prn = lambda x: handle_pkt(x))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,5 @@
P4APPRUNNER=../../utils/p4apprunner.py
mkdir -p build
tar -czf build/p4app.tgz * --exclude='build'
#cd build
sudo python $P4APPRUNNER p4app.tgz --build-dir ./build

View File

@ -0,0 +1,4 @@
table_set_default ipv4_lpm drop
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => 00:aa:00:01:00:01 1
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => f2:ed:e6:df:4e:fa 2
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => f2:ed:e6:df:4e:fb 3

View File

@ -0,0 +1,4 @@
table_set_default ipv4_lpm drop
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => 00:aa:00:02:00:02 1
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => 22:a8:04:41:ab:d3 2
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => 22:a8:04:41:ab:d4 3

View File

@ -0,0 +1,4 @@
table_set_default ipv4_lpm drop
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => 00:aa:00:03:00:01 1
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => f2:ed:e6:df:4e:fb 2
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => f2:ed:e6:df:4e:fa 3

View File

@ -0,0 +1,40 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
from scapy.all import sendp, send, get_if_list, get_if_hwaddr
from scapy.all import Packet
from scapy.all import Ether, IP, UDP
def get_if():
ifs=get_if_list()
iface=None # "h1-eth0"
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def main():
if len(sys.argv)<3:
print 'pass 2 arguments: <destination> "<message>"'
exit(1)
addr = socket.gethostbyname(sys.argv[1])
iface = get_if()
print "sending on interface %s to %s" % (iface, str(addr))
pkt = Ether(src=get_if_hwaddr(iface), dst='ff:ff:ff:ff:ff:ff') / IP(dst=addr) / UDP(dport=4321, sport=1234) / sys.argv[2]
pkt.show2()
sendp(pkt, iface=iface, verbose=False)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,180 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<16> TYPE_IPV4 = 0x800;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
/* empty */
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser ParserImpl(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control verifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control ingress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control egress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control computeChecksum(
inout headers hdr,
inout metadata meta)
{
Checksum16() ipv4_checksum;
apply {
if (hdr.ipv4.isValid()) {
hdr.ipv4.hdrChecksum = ipv4_checksum.get(
{
hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr
});
}
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control DeparserImpl(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
ParserImpl(),
verifyChecksum(),
ingress(),
egress(),
computeChecksum(),
DeparserImpl()
) main;

View File

@ -0,0 +1,206 @@
# Implementing MRI
## Introduction
The objective of this tutorial is to extend basic L3 forwarding with a
scaled-down version of In-Band Network Telemetry (INT), which we call
Multi-Hop Route Inspection (MRI).
MRI allows users to track the path that every packet travels through
the network. To support this functionality, you will need to write a
P4 program that appends an ID to the header stack of every packet. At
the destination, the sequence of switch IDs correspond to the path.
As before, we have already defined the control plane rules, so you
only need to implement the data plane logic of your P4 program.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`mri.p4`, which initially implements L3 forwarding. Your job (in the
next step) will be to extend it to properly append the MRI custom
headers.
Before that, let's compile the incomplete `mri.p4` and bring up a
switch in Mininet to test its behavior.
1. In your shell, run:
```bash
./run.sh
```
This will:
* compile `mri.p4`, and
* start a Mininet instance with three switches (`s1`, `s2`, `s3`) configured
in a triangle, each connected to one host (`h1`, `h2`, `h3`).
* The hosts are assigned IPs of `10.0.1.10`, `10.0.2.10`, etc.
2. You should now see a Mininet command prompt. Open two terminals for `h1` and `h2`, respectively:
```bash
mininet> xterm h1 h2
```
3. Each host includes a small Python-based messaging client and server. In `h2`'s xterm, start the server:
```bash
./receive.py
```
4. In `h1`'s xterm, send a message from the client:
```bash
./send.py 10.0.2.10 "P4 is cool"
```
The message "P4 is cool" should be received in `h2`'s xterm,
5. Type `exit` to leave each xterm and the Mininet command line.
You should see the message received at host `h2`, but without any information
about the path the message took. Your job is to extend the code in `mri.p4` to
implement the MRI logic to record the path.
### A note about the control plane
P4 programs define a packet-processing pipeline, but the rules governing packet
processing are inserted into the pipeline by the control plane. When a rule
matches a packet, its action is invoked with parameters supplied by the control
plane as part of the rule.
In this exercise, the control plane logic has already been implemented. As
part of bringing up the Mininet instance, the `run.sh` script will install
packet-processing rules in the tables of each switch. These are defined in the
`sX-commands.txt` files, where `X` corresponds to the switch number.
## Step 2: Implement MRI
The `mri.p4` file contains a skeleton P4 program with key pieces of
logic replaced by `TODO` comments. These should guide your
implementation---replace each `TODO` with logic implementing the missing piece.
MRI will require two custom headers. The first header, `mri_t`,
contains a single field `count`, which indicates the number of switch
IDs that follow. The second header, `switch_t`, contains a single
field with the switch ID.
One of the biggest challenges in implementing MRI is handling the
recursive logic for parsing these two headers. We will use a
`parser_metadata` field, `remaining`, to keep track of how many
`switch_t` headers we need to parse. In the `parse_mri` state, this
field should be set to `hdr.mri.count`. In the `parse_swid` state,
this field should be decremented. The `parse_swid` state will
transition to itself until `remaining` is 0.
The MRI custom headers will be carried inside an IP Options
header. The IP Options header contains a field, `option`, which
indicates the type of the option. We will use a special type 31 to
indicate the presence of the MRI headers.
Beyond the parser logic, you will add a table, `swid` to store the
switch ID, and actions that add the `mri_t` header if it doesn't
exist, increment the `count` field, and append a `switch_t` header.
A complete `mri.p4` will contain the following components:
1. Header type definitions for Ethernet (`ethernet_t`), IPv4 (`ipv4_t`),
IP Options (`ipv4_option_t`), MRI (`mri_t`), and Switch (`switch_t`).
2. Parsers for Ethernet, IPv4, IP Options, MRI, and Switch that will
populate `ethernet_t`, `ipv4_t`, `ipv4_option_t`, `mri_t`, and
`switch_t`.
3. An action to drop a packet, using `mark_to_drop()`.
4. An action (called `ipv4_forward`), which will:
1. Set the egress port for the next hop.
2. Update the ethernet destination address with the address of the next hop.
3. Update the ethernet source address with the address of the switch.
4. Decrement the TTL.
5. An action (called `add_mri_option`) that will add the IP Options and MRI
header. Note that you can use the `setValid()` function, which adds a
header if it does not exist, but otherwise leaves the packet
unmodified.
6. An action (called `add_swid`) that will add the switch ID header.
7. A table (`swid`) to store the switch ID, and calls `add_swid`.
8. A control that:
1. Defines a table that will read an IPv4 destination address, and
invoke either `drop` or `ipv4_forward`.
1. An `apply` block that applies the table.
9. A deparser that selects the order in which fields inserted into the outgoing
packet.
10. A `package` instantiation supplied with the parser, control, and deparser.
> In general, a package also requires instances of checksum verification
> and recomputation controls. These are not necessary for this tutorial
> and are replaced with instantiations of empty controls.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, when your message from `h1` is
delivered to `h2`, you should see the seqeunce of switches
through which the packet traveled. The expected output will look like the
following, which shows the MRI header, with a `count` of 2, and switch ids (`swids`) 2 and 1.
```
got a packet
###[ Ethernet ]###
dst = 00:aa:00:02:00:02
src = f2:ed:e6:df:4e:fa
type = 0x800
###[ IP ]###
version = 4L
ihl = 8L
tos = 0x0
len = 33
id = 1
flags =
frag = 0L
ttl = 62
proto = udp
chksum = 0x63b8
src = 10.0.1.10
dst = 10.0.2.10
\options \
|###[ MRI ]###
| copy_flag = 1L
| optclass = debug
| option = 31L
| length = 12
| count = 2
| swids = [2, 1]
```
### Troubleshooting
There are several ways that problems might manifest:
1. `mri.p4` fails to compile. In this case, `run.sh` will report the
error emitted from the compiler and stop.
1. `mri.p4` compiles but does not support the control plane rules in
the `sX-commands.txt` files that `run.sh` tries to install using the BMv2 CLI.
In this case, `run.sh` will report these errors to `stderr`. Use these error
messages to fix your `ipv4_forward.p4` implementation.
1. `mri.p4` compiles, and the control plane rules are installed, but
the switch does not process packets in the desired way. The
`build/logs/<switch-name>.log` files contain trace messages describing how each
switch processes each packet. The output is detailed and can help pinpoint
logic errors in your implementation.
#### Cleaning up Mininet
In the latter two cases above, `run.sh` may leave a Mininet instance running in
the background. Use the following command to clean up these instances:
```bash
mn -c
```
## Next Steps
Congratulations, your implementation works! Move on to the next exercise:
implementing an [ARP and ICMP Responder](../arp).

View File

@ -0,0 +1,286 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> UDP_PROTOCOL = 0x11;
const bit<16> TYPE_IPV4 = 0x800;
const bit<5> IPV4_OPTION_MRI = 31;
#define MAX_HOPS 9
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
typedef bit<32> switchID_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
header ipv4_option_t {
bit<1> copyFlag;
bit<2> optClass;
bit<5> option;
bit<8> optionLength;
}
header mri_t {
bit<16> count;
}
header switch_t {
switchID_t swid;
}
struct ingress_metadata_t {
bit<16> count;
}
struct parser_metadata_t {
bit<16> remaining;
}
struct metadata {
ingress_metadata_t ingress_metadata;
parser_metadata_t parser_metadata;
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
ipv4_option_t ipv4_option;
mri_t mri;
switch_t[MAX_HOPS] swids;
}
error { IPHeaderTooShort }
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser ParserImpl(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);
/*
* TODO: Modify the next line to select on the value of hdr.ipv4.ihl.
* If the value of hdr.ipv4.ihl is set to 5, accept.
* Otherwise, transition to parse_ipv4_option.
*/
transition accept;
}
/* TODO: Implement the logic for parse_ipv4_options, parse_mri, and parse_swid */
state parse_ipv4_option {
/*
* TODO: Add logic to:
* - Extract the ipv4_option header.
* - If the value is equal to IPV4_OPTION_MRI, transition to parse_mri.
* - Otherwise, accept.
*/
}
state parse_mri {
/*
* TODO: Add logic to:
* - Extract hdr.mri.
* - Set meta.parser_metadata.remaining to hdr.mri.count
* - Select on the value of meta.parser_metadata.remaining
* - If the value is equal to 0, accept.
* - Otherwise, transition to parse_swid.
*/
}
state parse_swid {
/*
* TODO: Add logic to:
* - Extract hdr.swids.next.
* - Decrement meta.parser_metadata.remaining by 1
* - Select on the value of meta.parser_metadata.remaining
* - If the value is equal to 0, accept.
* - Otherwise, transition to parse_swid.
*/
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control verifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control ingress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action add_mri_option() {
/*
* TODO: add logic to:
* - Call setValid() on hdr.ipv4_option, which will add the header if it is not
* there, or leave the packet unchanged.
* - Set hdr.ipv4_option.copyFlag to 1
* - Set hdr.ipv4_option.optClass to 2
* - Set hdr.ipv4_option.option to IPV4_OPTION_MRI
* - Set the hdr.ipv4_option.optionLength to 4
* - Call setValid() on hdr.mri
* - Set hdr.mri.count to 0
* - Increment hdr.ipv4.ihl by 1
*/
}
action add_swid(switchID_t id) {
/*
* TODO: add logic to:
- Increment hdr.mri.count by 1
- Add a new swid header by calling push_front(1) on hdr.swids.
- Set hdr.swids[0].swid to the id paremeter
- Incremement hdr.ipv4.ihl by 1
- Incrememtn hdr.ipv4_option.optionLength by 4
*/
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table swid {
actions =
{
/* TODO: repace NoAction with the correct action */
NoAction;
}
/* TODO: set a default action. */
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
ipv4_lpm.apply();
/*
* TODO: add logic to:
* - If hdr.ipv4 is valid:
* - Apply table ipv4_lpm
* - If hdr.mri is not valid, call add_mri_option()
* - Apply table swid
*/
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control egress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control computeChecksum(
inout headers hdr,
inout metadata meta)
{
/*
* Ignore checksum for now. The reference solution contains a checksum
* implementation.
*/
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control DeparserImpl(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
packet.emit(hdr.ipv4_option);
packet.emit(hdr.mri);
packet.emit(hdr.swids);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
ParserImpl(),
verifyChecksum(),
ingress(),
egress(),
computeChecksum(),
DeparserImpl()
) main;

View File

@ -0,0 +1,33 @@
{
"program": "mri.p4",
"language": "p4-16",
"targets": {
"multiswitch": {
"auto-control-plane": true,
"cli": true,
"pcap_dump": true,
"bmv2_log": true,
"links": [["h1", "s1"], ["s1", "s2"], ["s1", "s3"], ["s3", "s2"], ["s2", "h2"], ["s3", "h3"]],
"hosts": {
"h1": {
},
"h2": {
},
"h3": {
}
},
"switches": {
"s1": {
"entries": "s1-commands.txt"
},
"s2": {
"entries": "s2-commands.txt"
},
"s3": {
"entries": "s3-commands.txt"
}
}
}
}
}

View File

@ -0,0 +1,50 @@
#!/usr/bin/env python
import sys
import struct
from scapy.all import sniff, sendp, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import ShortField, IntField, LongField, BitField, FieldListField, FieldLenField
from scapy.all import IP, UDP, Raw
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
class IPOption_MRI(IPOption):
name = "MRI"
option = 31
fields_desc = [ _IPOption_HDR,
FieldLenField("length", None, fmt="B",
length_of="swids",
adjust=lambda pkt,l:l+4),
ShortField("count", 0),
FieldListField("swids",
[],
IntField("", 0),
length_from=lambda pkt:pkt.count*4) ]
def handle_pkt(pkt):
print "got a packet"
pkt.show2()
# hexdump(pkt)
sys.stdout.flush()
def main():
iface = 'h2-eth0'
print "sniffing on %s" % iface
sys.stdout.flush()
sniff(filter="udp and port 4321", iface = iface,
prn = lambda x: handle_pkt(x))
if __name__ == '__main__':
main()

5
P4D2_2017/exercises/mri/run.sh Executable file
View File

@ -0,0 +1,5 @@
P4APPRUNNER=../../utils/p4apprunner.py
mkdir -p build
tar -czf build/p4app.tgz * --exclude='build'
#cd build
sudo python $P4APPRUNNER p4app.tgz --build-dir ./build

View File

@ -0,0 +1,5 @@
table_set_default ipv4_lpm drop
table_set_default swid add_swid 1
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => 00:aa:00:01:00:01 1
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => f2:ed:e6:df:4e:fa 2
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => f2:ed:e6:df:4e:fb 3

View File

@ -0,0 +1,5 @@
table_set_default ipv4_lpm drop
table_set_default swid add_swid 2
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => 00:aa:00:02:00:02 1
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => 22:a8:04:41:ab:d3 2
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => 22:a8:04:41:ab:d4 3

View File

@ -0,0 +1,5 @@
table_set_default ipv4_lpm drop
table_set_default swid add_swid 3
table_add ipv4_lpm ipv4_forward 10.0.3.10/32 => 00:aa:00:03:00:01 1
table_add ipv4_lpm ipv4_forward 10.0.1.10/32 => f2:ed:e6:df:4e:fb 2
table_add ipv4_lpm ipv4_forward 10.0.2.10/32 => f2:ed:e6:df:4e:fa 3

58
P4D2_2017/exercises/mri/send.py Executable file
View File

@ -0,0 +1,58 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
from scapy.all import sendp, send, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import Ether, IP, UDP
from scapy.all import IntField, FieldListField, FieldLenField, ShortField
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None # "h1-eth0"
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
class IPOption_MRI(IPOption):
name = "MRI"
option = 31
fields_desc = [ _IPOption_HDR,
FieldLenField("length", None, fmt="B",
length_of="swids",
adjust=lambda pkt,l:l+4),
ShortField("count", 0),
FieldListField("swids",
[],
IntField("", 0),
length_from=lambda pkt:pkt.count*4) ]
def main():
if len(sys.argv)<3:
print 'pass 2 arguments: <destination> "<message>"'
exit(1)
addr = socket.gethostbyname(sys.argv[1])
iface = get_if()
pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff:ff:ff:ff") / IP(dst=addr) / UDP(dport=4321, sport=1234) / sys.argv[2]
#pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff:ff:ff:ff") / IP(dst=addr, options = IPOption_MRI(count=2, swids=[3,4])) / UDP(dport=4321, sport=1234) / sys.argv[2]
pkt.show2()
#hexdump(pkt)
sendp(pkt, iface=iface)
if __name__ == '__main__':
main()

View File

@ -0,0 +1,278 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> UDP_PROTOCOL = 0x11;
const bit<16> TYPE_IPV4 = 0x800;
const bit<5> IPV4_OPTION_MRI = 31;
#define MAX_HOPS 9
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
typedef bit<32> switchID_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
header ipv4_option_t {
bit<1> copyFlag;
bit<2> optClass;
bit<5> option;
bit<8> optionLength;
}
header mri_t {
bit<16> count;
}
header switch_t {
switchID_t swid;
}
struct ingress_metadata_t {
bit<16> count;
}
struct parser_metadata_t {
bit<16> remaining;
}
struct metadata {
ingress_metadata_t ingress_metadata;
parser_metadata_t parser_metadata;
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
ipv4_option_t ipv4_option;
mri_t mri;
switch_t[MAX_HOPS] swids;
}
error { IPHeaderTooShort }
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser ParserImpl(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);
transition select(hdr.ipv4.ihl) {
5 : accept;
default : parse_ipv4_option;
}
}
state parse_ipv4_option {
packet.extract(hdr.ipv4_option);
transition select(hdr.ipv4_option.option) {
IPV4_OPTION_MRI: parse_mri;
default: accept;
}
}
state parse_mri {
packet.extract(hdr.mri);
meta.parser_metadata.remaining = hdr.mri.count;
transition select(meta.parser_metadata.remaining) {
0 : accept;
default: parse_swid;
}
}
state parse_swid {
packet.extract(hdr.swids.next);
meta.parser_metadata.remaining = meta.parser_metadata.remaining - 1;
transition select(meta.parser_metadata.remaining) {
0 : accept;
default: parse_swid;
}
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control verifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control ingress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action add_mri_option() {
hdr.ipv4_option.setValid();
hdr.ipv4_option.copyFlag = 1;
hdr.ipv4_option.optClass = 2; /* Debugging and Measurement */
hdr.ipv4_option.option = IPV4_OPTION_MRI;
hdr.ipv4_option.optionLength = 4; /* sizeof(ipv4_option) + sizeof(mri) */
hdr.mri.setValid();
hdr.mri.count = 0;
hdr.ipv4.ihl = hdr.ipv4.ihl + 1;
}
action add_swid(switchID_t id) {
hdr.mri.count = hdr.mri.count + 1;
hdr.swids.push_front(1);
hdr.swids[0].swid = id;
hdr.ipv4.ihl = hdr.ipv4.ihl + 1;
hdr.ipv4_option.optionLength = hdr.ipv4_option.optionLength + 4;
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table swid {
actions = { add_swid; NoAction; }
default_action = NoAction();
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
if (!hdr.mri.isValid()) {
add_mri_option();
}
swid.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control egress(inout headers hdr, inout metadata meta, inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control computeChecksum(
inout headers hdr,
inout metadata meta)
{
Checksum16() ipv4_checksum;
apply {
if (hdr.ipv4.isValid()) {
hdr.ipv4.hdrChecksum = ipv4_checksum.get(
{
hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr
});
}
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control DeparserImpl(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
packet.emit(hdr.ipv4_option);
packet.emit(hdr.mri);
packet.emit(hdr.swids);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
ParserImpl(),
verifyChecksum(),
ingress(),
egress(),
computeChecksum(),
DeparserImpl()
) main;

View File

@ -0,0 +1,103 @@
import subprocess
from shortest_path import ShortestPath
class AppController:
def __init__(self, manifest=None, target=None, topo=None, net=None, links=None):
self.manifest = manifest
self.target = target
self.conf = manifest['targets'][target]
self.topo = topo
self.net = net
self.links = links
def read_entries(self, filename):
entries = []
with open(filename, 'r') as f:
for line in f:
line = line.strip()
if line == '': continue
entries.append(line)
return entries
def add_entries(self, thrift_port=9090, sw=None, entries=None):
assert entries
if sw: thrift_port = sw.thrift_port
print '\n'.join(entries)
p = subprocess.Popen(['simple_switch_CLI', '--thrift-port', str(thrift_port)], stdin=subprocess.PIPE)
p.communicate(input='\n'.join(entries))
def read_register(self, register, idx, thrift_port=9090, sw=None):
if sw: thrift_port = sw.thrift_port
p = subprocess.Popen(['simple_switch_CLI', '--thrift-port', str(thrift_port)], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate(input="register_read %s %d" % (register, idx))
reg_val = filter(lambda l: ' %s[%d]' % (register, idx) in l, stdout.split('\n'))[0].split('= ', 1)[1]
return long(reg_val)
def start(self):
shortestpath = ShortestPath(self.links)
entries = {}
for sw in self.topo.switches():
entries[sw] = []
if 'switches' in self.conf and sw in self.conf['switches'] and 'entries' in self.conf['switches'][sw]:
extra_entries = self.conf['switches'][sw]['entries']
if type(extra_entries) == list: # array of entries
entries[sw] += extra_entries
else: # path to file that contains entries
entries[sw] += self.read_entries(extra_entries)
#entries[sw] += [
# 'table_set_default send_frame _drop',
# 'table_set_default forward _drop',
# 'table_set_default ipv4_lpm _drop']
for host_name in self.topo._host_links:
h = self.net.get(host_name)
for link in self.topo._host_links[host_name].values():
sw = link['sw']
#entries[sw].append('table_add send_frame rewrite_mac %d => %s' % (link['sw_port'], link['sw_mac']))
#entries[sw].append('table_add forward set_dmac %s => %s' % (link['host_ip'], link['host_mac']))
#entries[sw].append('table_add ipv4_lpm set_nhop %s/32 => %s %d' % (link['host_ip'], link['host_ip'], link['sw_port']))
iface = h.intfNames()[link['idx']]
# use mininet to set ip and mac to let it know the change
h.setIP(link['host_ip'], 16)
h.setMAC(link['host_mac'])
#h.cmd('ifconfig %s %s hw ether %s' % (iface, link['host_ip'], link['host_mac']))
h.cmd('arp -i %s -s %s %s' % (iface, link['sw_ip'], link['sw_mac']))
h.cmd('ethtool --offload %s rx off tx off' % iface)
h.cmd('ip route add %s dev %s' % (link['sw_ip'], iface))
h.setDefaultRoute("via %s" % link['sw_ip'])
for h in self.net.hosts:
h_link = self.topo._host_links[h.name].values()[0]
for sw in self.net.switches:
path = shortestpath.get(sw.name, h.name, exclude=lambda n: n[0]=='h')
if not path: continue
if not path[1][0] == 's': continue # next hop is a switch
sw_link = self.topo._sw_links[sw.name][path[1]]
#entries[sw.name].append('table_add send_frame rewrite_mac %d => %s' % (sw_link[0]['port'], sw_link[0]['mac']))
#entries[sw.name].append('table_add forward set_dmac %s => %s' % (h_link['host_ip'], sw_link[1]['mac']))
#entries[sw.name].append('table_add ipv4_lpm set_nhop %s/32 => %s %d' % (h_link['host_ip'], h_link['host_ip'], sw_link[0]['port']))
for h2 in self.net.hosts:
if h == h2: continue
path = shortestpath.get(h.name, h2.name, exclude=lambda n: n[0]=='h')
if not path: continue
h_link = self.topo._host_links[h.name][path[1]]
h2_link = self.topo._host_links[h2.name].values()[0]
h.cmd('ip route add %s via %s' % (h2_link['host_ip'], h_link['sw_ip']))
print "**********"
print "Configuring entries in p4 tables"
for sw_name in entries:
print
print "Configuring switch... %s" % sw_name
sw = self.net.get(sw_name)
self.add_entries(sw=sw, entries=entries[sw_name])
print "Configuration complete."
print "**********"
def stop(self):
pass

View File

@ -0,0 +1,69 @@
from mininet.topo import Topo
class AppTopo(Topo):
def __init__(self, links, latencies={}, manifest=None, target=None,
log_dir="/tmp", **opts):
Topo.__init__(self, **opts)
nodes = sum(map(list, zip(*links)), [])
host_names = sorted(list(set(filter(lambda n: n[0] == 'h', nodes))))
sw_names = sorted(list(set(filter(lambda n: n[0] == 's', nodes))))
sw_ports = dict([(sw, []) for sw in sw_names])
self._host_links = {}
self._sw_links = dict([(sw, {}) for sw in sw_names])
for sw_name in sw_names:
self.addSwitch(sw_name, log_file="%s/%s.log" %(log_dir, sw_name))
for host_name in host_names:
host_num = int(host_name[1:])
host_ip = "10.0.%d.10" % host_num
host_mac = '00:04:00:00:00:%02x' % host_num
self.addHost(host_name)
self._host_links[host_name] = {}
host_links = filter(lambda l: l[0]==host_name or l[1]==host_name, links)
sw_idx = 0
for link in host_links:
sw = link[0] if link[0] != host_name else link[1]
sw_num = int(sw[1:])
assert sw[0]=='s', "Hosts should be connected to switches, not " + str(sw)
delay_key = ''.join([host_name, sw])
delay = latencies[delay_key] if delay_key in latencies else '0ms'
sw_ports[sw].append(host_name)
self._host_links[host_name][sw] = dict(
idx=sw_idx,
host_mac = host_mac,
host_ip = host_ip,
sw = sw,
sw_mac = "00:aa:00:%02x:00:%02x" % (sw_num, host_num),
sw_ip = "10.0.%d.%d" % (host_num, sw_idx+1),
sw_port = sw_ports[sw].index(host_name)+1
)
self.addLink(host_name, sw, delay=delay,
addr1=host_mac, addr2=self._host_links[host_name][sw]['sw_mac'])
sw_idx += 1
for link in links: # only check switch-switch links
sw1, sw2 = link
if sw1[0] != 's' or sw2[0] != 's': continue
delay_key = ''.join(sorted([host_name, sw]))
delay = latencies[delay_key] if delay_key in latencies else '0ms'
self.addLink(sw1, sw2, delay=delay)
sw_ports[sw1].append(sw2)
sw_ports[sw2].append(sw1)
sw1_num, sw2_num = int(sw1[1:]), int(sw2[1:])
sw1_port = dict(mac="00:aa:00:%02x:%02x:00" % (sw1_num, sw2_num), port=sw_ports[sw1].index(sw2)+1)
sw2_port = dict(mac="00:aa:00:%02x:%02x:00" % (sw2_num, sw1_num), port=sw_ports[sw2].index(sw1)+1)
self._sw_links[sw1][sw2] = [sw1_port, sw2_port]
self._sw_links[sw2][sw1] = [sw2_port, sw1_port]

View File

@ -0,0 +1,242 @@
#!/usr/bin/env python2
# Copyright 2013-present Barefoot Networks, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import signal
import os
import sys
import subprocess
import argparse
import json
import importlib
import re
from time import sleep
from mininet.net import Mininet
from mininet.topo import Topo
from mininet.link import TCLink
from mininet.log import setLogLevel, info
from mininet.cli import CLI
from p4_mininet import P4Switch, P4Host
import apptopo
import appcontroller
parser = argparse.ArgumentParser(description='Mininet demo')
parser.add_argument('--behavioral-exe', help='Path to behavioral executable',
type=str, action="store", required=True)
parser.add_argument('--thrift-port', help='Thrift server port for table updates',
type=int, action="store", default=9090)
parser.add_argument('--bmv2-log', help='verbose messages in log file', action="store_true")
parser.add_argument('--cli', help="start the mininet cli", action="store_true")
parser.add_argument('--auto-control-plane', help='enable automatic control plane population', action="store_true")
parser.add_argument('--json', help='Path to JSON config file',
type=str, action="store", required=True)
parser.add_argument('--pcap-dump', help='Dump packets on interfaces to pcap files',
action="store_true")
parser.add_argument('--manifest', '-m', help='Path to manifest file',
type=str, action="store", required=True)
parser.add_argument('--target', '-t', help='Target in manifest file to run',
type=str, action="store", required=True)
parser.add_argument('--log-dir', '-l', help='Location to save output to',
type=str, action="store", required=True)
parser.add_argument('--cli-message', help='Message to print before starting CLI',
type=str, action="store", required=False, default=False)
args = parser.parse_args()
next_thrift_port = args.thrift_port
def run_command(command):
return os.WEXITSTATUS(os.system(command))
def configureP4Switch(**switch_args):
class ConfiguredP4Switch(P4Switch):
def __init__(self, *opts, **kwargs):
global next_thrift_port
kwargs.update(switch_args)
kwargs['thrift_port'] = next_thrift_port
next_thrift_port += 1
P4Switch.__init__(self, *opts, **kwargs)
return ConfiguredP4Switch
def main():
with open(args.manifest, 'r') as f:
manifest = json.load(f)
conf = manifest['targets'][args.target]
params = conf['parameters'] if 'parameters' in conf else {}
os.environ.update(dict(map(lambda (k,v): (k, str(v)), params.iteritems())))
def formatParams(s):
for param in params:
s = re.sub('\$'+param+'(\W|$)', str(params[param]) + r'\1', s)
s = s.replace('${'+param+'}', str(params[param]))
return s
AppTopo = apptopo.AppTopo
AppController = appcontroller.AppController
if 'topo_module' in conf:
sys.path.insert(0, os.path.dirname(args.manifest))
topo_module = importlib.import_module(conf['topo_module'])
AppTopo = topo_module.CustomAppTopo
if 'controller_module' in conf:
sys.path.insert(0, os.path.dirname(args.manifest))
controller_module = importlib.import_module(conf['controller_module'])
AppController = controller_module.CustomAppController
if not os.path.isdir(args.log_dir):
if os.path.exists(args.log_dir): raise Exception('Log dir exists and is not a dir')
os.mkdir(args.log_dir)
os.environ['P4APP_LOGDIR'] = args.log_dir
links = [l[:2] for l in conf['links']]
latencies = dict([(''.join(sorted(l[:2])), l[2]) for l in conf['links'] if len(l)==3])
for host_name in sorted(conf['hosts'].keys()):
host = conf['hosts'][host_name]
if 'latency' not in host: continue
for a, b in links:
if a != host_name and b != host_name: continue
other = a if a != host_name else b
latencies[host_name+other] = host['latency']
for l in latencies:
if isinstance(latencies[l], (str, unicode)):
latencies[l] = formatParams(latencies[l])
else:
latencies[l] = str(latencies[l]) + "ms"
bmv2_log = args.bmv2_log or ('bmv2_log' in conf and conf['bmv2_log'])
pcap_dump = args.pcap_dump or ('pcap_dump' in conf and conf['pcap_dump'])
topo = AppTopo(links, latencies, manifest=manifest, target=args.target,
log_dir=args.log_dir)
switchClass = configureP4Switch(
sw_path=args.behavioral_exe,
json_path=args.json,
log_console=bmv2_log,
pcap_dump=pcap_dump)
net = Mininet(topo = topo,
link = TCLink,
host = P4Host,
switch = switchClass,
controller = None)
net.start()
sleep(1)
controller = None
if args.auto_control_plane or 'controller_module' in conf:
controller = AppController(manifest=manifest, target=args.target,
topo=topo, net=net, links=links)
controller.start()
for h in net.hosts:
h.describe()
if args.cli_message is not None:
with open(args.cli_message, 'r') as message_file:
print message_file.read()
if args.cli or ('cli' in conf and conf['cli']):
CLI(net)
stdout_files = dict()
return_codes = []
host_procs = []
def formatCmd(cmd):
for h in net.hosts:
cmd = cmd.replace(h.name, h.defaultIntf().updateIP())
return cmd
def _wait_for_exit(p, host):
print p.communicate()
if p.returncode is None:
p.wait()
print p.communicate()
return_codes.append(p.returncode)
if host_name in stdout_files:
stdout_files[host_name].flush()
stdout_files[host_name].close()
print '\n'.join(map(lambda (k,v): "%s: %s"%(k,v), params.iteritems())) + '\n'
for host_name in sorted(conf['hosts'].keys()):
host = conf['hosts'][host_name]
if 'cmd' not in host: continue
h = net.get(host_name)
stdout_filename = os.path.join(args.log_dir, h.name + '.stdout')
stdout_files[h.name] = open(stdout_filename, 'w')
cmd = formatCmd(host['cmd'])
print h.name, cmd
p = h.popen(cmd, stdout=stdout_files[h.name], shell=True, preexec_fn=os.setpgrp)
if 'startup_sleep' in host: sleep(host['startup_sleep'])
if 'wait' in host and host['wait']:
_wait_for_exit(p, host_name)
else:
host_procs.append((p, host_name))
for p, host_name in host_procs:
if 'wait' in conf['hosts'][host_name] and conf['hosts'][host_name]['wait']:
_wait_for_exit(p, host_name)
for p, host_name in host_procs:
if 'wait' in conf['hosts'][host_name] and conf['hosts'][host_name]['wait']:
continue
if p.returncode is None:
run_command('pkill -INT -P %d' % p.pid)
sleep(0.2)
rc = run_command('pkill -0 -P %d' % p.pid) # check if it's still running
if rc == 0: # the process group is still running, send TERM
sleep(1) # give it a little more time to exit gracefully
run_command('pkill -TERM -P %d' % p.pid)
_wait_for_exit(p, host_name)
if 'after' in conf and 'cmd' in conf['after']:
cmds = conf['after']['cmd'] if type(conf['after']['cmd']) == list else [conf['after']['cmd']]
for cmd in cmds:
os.system(cmd)
if controller: controller.stop()
net.stop()
# if bmv2_log:
# os.system('bash -c "cp /tmp/p4s.s*.log \'%s\'"' % args.log_dir)
# if pcap_dump:
# os.system('bash -c "cp *.pcap \'%s\'"' % args.log_dir)
bad_codes = [rc for rc in return_codes if rc != 0]
if len(bad_codes): sys.exit(1)
if __name__ == '__main__':
setLogLevel( 'info' )
main()

View File

@ -0,0 +1,161 @@
# Copyright 2013-present Barefoot Networks, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mininet.net import Mininet
from mininet.node import Switch, Host
from mininet.log import setLogLevel, info, error, debug
from mininet.moduledeps import pathCheck
from sys import exit
from time import sleep
import os
import tempfile
import socket
class P4Host(Host):
def config(self, **params):
r = super(P4Host, self).config(**params)
for off in ["rx", "tx", "sg"]:
cmd = "/sbin/ethtool --offload %s %s off" % (self.defaultIntf().name, off)
self.cmd(cmd)
# disable IPv6
self.cmd("sysctl -w net.ipv6.conf.all.disable_ipv6=1")
self.cmd("sysctl -w net.ipv6.conf.default.disable_ipv6=1")
self.cmd("sysctl -w net.ipv6.conf.lo.disable_ipv6=1")
return r
def describe(self, sw_addr=None, sw_mac=None):
print "**********"
print "Network configuration for: %s" % self.name
print "Default interface: %s\t%s\t%s" %(
self.defaultIntf().name,
self.defaultIntf().IP(),
self.defaultIntf().MAC()
)
if sw_addr is not None or sw_mac is not None:
print "Default route to switch: %s (%s)" % (sw_addr, sw_mac)
print "**********"
class P4Switch(Switch):
"""P4 virtual switch"""
device_id = 0
def __init__(self, name, sw_path = None, json_path = None,
log_file = None,
thrift_port = None,
pcap_dump = False,
log_console = False,
verbose = False,
device_id = None,
enable_debugger = False,
**kwargs):
Switch.__init__(self, name, **kwargs)
assert(sw_path)
assert(json_path)
# make sure that the provided sw_path is valid
pathCheck(sw_path)
# make sure that the provided JSON file exists
if not os.path.isfile(json_path):
error("Invalid JSON file.\n")
exit(1)
self.sw_path = sw_path
self.json_path = json_path
self.verbose = verbose
self.log_file = log_file
if self.log_file is None:
self.log_file = "/tmp/p4s.{}.log".format(self.name)
self.output = open(self.log_file, 'w')
self.thrift_port = thrift_port
self.pcap_dump = pcap_dump
self.enable_debugger = enable_debugger
self.log_console = log_console
if device_id is not None:
self.device_id = device_id
P4Switch.device_id = max(P4Switch.device_id, device_id)
else:
self.device_id = P4Switch.device_id
P4Switch.device_id += 1
self.nanomsg = "ipc:///tmp/bm-{}-log.ipc".format(self.device_id)
@classmethod
def setup(cls):
pass
def check_switch_started(self, pid):
"""While the process is running (pid exists), we check if the Thrift
server has been started. If the Thrift server is ready, we assume that
the switch was started successfully. This is only reliable if the Thrift
server is started at the end of the init process"""
while True:
if not os.path.exists(os.path.join("/proc", str(pid))):
return False
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(0.5)
result = sock.connect_ex(("localhost", self.thrift_port))
if result == 0:
return True
def start(self, controllers):
"Start up a new P4 switch"
info("Starting P4 switch {}.\n".format(self.name))
args = [self.sw_path]
for port, intf in self.intfs.items():
if not intf.IP():
args.extend(['-i', str(port) + "@" + intf.name])
if self.pcap_dump:
args.append("--pcap")
# args.append("--useFiles")
if self.thrift_port:
args.extend(['--thrift-port', str(self.thrift_port)])
if self.nanomsg:
args.extend(['--nanolog', self.nanomsg])
args.extend(['--device-id', str(self.device_id)])
P4Switch.device_id += 1
args.append(self.json_path)
if self.enable_debugger:
args.append("--debugger")
if self.log_console:
args.append("--log-console")
info(' '.join(args) + "\n")
pid = None
with tempfile.NamedTemporaryFile() as f:
# self.cmd(' '.join(args) + ' > /dev/null 2>&1 &')
self.cmd(' '.join(args) + ' >' + self.log_file + ' 2>&1 & echo $! >> ' + f.name)
pid = int(f.read())
debug("P4 switch {} PID is {}.\n".format(self.name, pid))
sleep(1)
if not self.check_switch_started(pid):
error("P4 switch {} did not start correctly."
"Check the switch log file.\n".format(self.name))
exit(1)
info("P4 switch {} has been started.\n".format(self.name))
def stop(self):
"Terminate P4 switch."
self.output.flush()
self.cmd('kill %' + self.sw_path)
self.cmd('wait')
self.deleteIntfs()
def attach(self, intf):
"Connect a data port"
assert(0)
def detach(self, intf):
"Disconnect a data port"
assert(0)

View File

@ -0,0 +1,78 @@
class ShortestPath:
def __init__(self, edges=[]):
self.neighbors = {}
for edge in edges:
self.addEdge(*edge)
def addEdge(self, a, b):
if a not in self.neighbors: self.neighbors[a] = []
if b not in self.neighbors[a]: self.neighbors[a].append(b)
if b not in self.neighbors: self.neighbors[b] = []
if a not in self.neighbors[b]: self.neighbors[b].append(a)
def get(self, a, b, exclude=lambda node: False):
# Shortest path from a to b
return self._recPath(a, b, [], exclude)
def _recPath(self, a, b, visited, exclude):
if a == b: return [a]
new_visited = visited + [a]
paths = []
for neighbor in self.neighbors[a]:
if neighbor in new_visited: continue
if exclude(neighbor) and neighbor != b: continue
path = self._recPath(neighbor, b, new_visited, exclude)
if path: paths.append(path)
paths.sort(key=len)
return [a] + paths[0] if len(paths) else None
if __name__ == '__main__':
edges = [
(1, 2),
(1, 3),
(1, 5),
(2, 4),
(3, 4),
(3, 5),
(3, 6),
(4, 6),
(5, 6),
(7, 8)
]
sp = ShortestPath(edges)
assert sp.get(1, 1) == [1]
assert sp.get(2, 2) == [2]
assert sp.get(1, 2) == [1, 2]
assert sp.get(2, 1) == [2, 1]
assert sp.get(1, 3) == [1, 3]
assert sp.get(3, 1) == [3, 1]
assert sp.get(4, 6) == [4, 6]
assert sp.get(6, 4) == [6, 4]
assert sp.get(2, 6) == [2, 4, 6]
assert sp.get(6, 2) == [6, 4, 2]
assert sp.get(1, 6) in [[1, 3, 6], [1, 5, 6]]
assert sp.get(6, 1) in [[6, 3, 1], [6, 5, 1]]
assert sp.get(2, 5) == [2, 1, 5]
assert sp.get(5, 2) == [5, 1, 2]
assert sp.get(4, 5) in [[4, 3, 5], [4, 6, 5]]
assert sp.get(5, 4) in [[5, 3, 4], [6, 6, 4]]
assert sp.get(7, 8) == [7, 8]
assert sp.get(8, 7) == [8, 7]
assert sp.get(1, 7) == None
assert sp.get(7, 2) == None

View File

@ -0,0 +1,133 @@
#!/usr/bin/env python2
# Copyright 2013-present Barefoot Networks, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mininet.net import Mininet
from mininet.topo import Topo
from mininet.log import setLogLevel, info
from mininet.cli import CLI
from p4_mininet import P4Switch, P4Host
import argparse
from subprocess import PIPE, Popen
from time import sleep
parser = argparse.ArgumentParser(description='Mininet demo')
parser.add_argument('--behavioral-exe', help='Path to behavioral executable',
type=str, action="store", required=True)
parser.add_argument('--thrift-port', help='Thrift server port for table updates',
type=int, action="store", default=9090)
parser.add_argument('--num-hosts', help='Number of hosts to connect to switch',
type=int, action="store", default=2)
parser.add_argument('--mode', choices=['l2', 'l3'], type=str, default='l3')
parser.add_argument('--json', help='Path to JSON config file',
type=str, action="store", required=True)
parser.add_argument('--log-file', help='Path to write the switch log file',
type=str, action="store", required=False)
parser.add_argument('--pcap-dump', help='Dump packets on interfaces to pcap files',
type=str, action="store", required=False, default=False)
parser.add_argument('--switch-config', help='simple_switch_CLI script to configure switch',
type=str, action="store", required=False, default=False)
parser.add_argument('--cli-message', help='Message to print before starting CLI',
type=str, action="store", required=False, default=False)
args = parser.parse_args()
class SingleSwitchTopo(Topo):
"Single switch connected to n (< 256) hosts."
def __init__(self, sw_path, json_path, log_file,
thrift_port, pcap_dump, n, **opts):
# Initialize topology and default options
Topo.__init__(self, **opts)
switch = self.addSwitch('s1',
sw_path = sw_path,
json_path = json_path,
log_console = True,
log_file = log_file,
thrift_port = thrift_port,
enable_debugger = False,
pcap_dump = pcap_dump)
for h in xrange(n):
host = self.addHost('h%d' % (h + 1),
ip = "10.0.%d.10/24" % h,
mac = '00:04:00:00:00:%02x' %h)
print "Adding host", str(host)
self.addLink(host, switch)
def main():
num_hosts = args.num_hosts
mode = args.mode
topo = SingleSwitchTopo(args.behavioral_exe,
args.json,
args.log_file,
args.thrift_port,
args.pcap_dump,
num_hosts)
net = Mininet(topo = topo,
host = P4Host,
switch = P4Switch,
controller = None)
net.start()
sw_mac = ["00:aa:bb:00:00:%02x" % n for n in xrange(num_hosts)]
sw_addr = ["10.0.%d.1" % n for n in xrange(num_hosts)]
for n in xrange(num_hosts):
h = net.get('h%d' % (n + 1))
if mode == "l2":
h.setDefaultRoute("dev %s" % h.defaultIntf().name)
else:
h.setARP(sw_addr[n], sw_mac[n])
h.setDefaultRoute("dev %s via %s" % (h.defaultIntf().name, sw_addr[n]))
for n in xrange(num_hosts):
h = net.get('h%d' % (n + 1))
h.describe(sw_addr[n], sw_mac[n])
sleep(1)
if args.switch_config is not None:
print
print "Reading switch configuration script:", args.switch_config
with open(args.switch_config, 'r') as config_file:
switch_config = config_file.read()
print "Configuring switch..."
proc = Popen(["simple_switch_CLI"], stdin=PIPE)
proc.communicate(input=switch_config)
print "Configuration complete."
print
print "Ready !"
if args.cli_message is not None:
with open(args.cli_message, 'r') as message_file:
print message_file.read()
CLI( net )
net.stop()
if __name__ == '__main__':
setLogLevel( 'info' )
main()

320
P4D2_2017/utils/p4apprunner.py Executable file
View File

@ -0,0 +1,320 @@
#!/usr/bin/env python2
# Copyright 2013-present Barefoot Networks, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
from collections import OrderedDict
import json
import os
import sys
import tarfile
parser = argparse.ArgumentParser(description='p4apprunner')
parser.add_argument('--build-dir', help='Directory to build in.',
type=str, action='store', required=False, default='/tmp')
parser.add_argument('--quiet', help='Suppress log messages.',
action='store_true', required=False, default=False)
parser.add_argument('--manifest', help='Path to manifest file.',
type=str, action='store', required=False, default='./p4app.json')
parser.add_argument('app', help='.p4app package to run.', type=str)
parser.add_argument('target', help=('Target to run. Defaults to the first target '
'in the package.'),
nargs='?', type=str)
args = parser.parse_args()
def log(*items):
if args.quiet != True:
print(*items)
def log_error(*items):
print(*items, file=sys.stderr)
def run_command(command):
log('>', command)
return os.WEXITSTATUS(os.system(command))
class Manifest:
def __init__(self, program_file, language, target, target_config):
self.program_file = program_file
self.language = language
self.target = target
self.target_config = target_config
def read_manifest(manifest_file):
manifest = json.load(manifest_file, object_pairs_hook=OrderedDict)
if 'program' not in manifest:
log_error('No program defined in manifest.')
sys.exit(1)
program_file = manifest['program']
if 'language' not in manifest:
log_error('No language defined in manifest.')
sys.exit(1)
language = manifest['language']
if 'targets' not in manifest or len(manifest['targets']) < 1:
log_error('No targets defined in manifest.')
sys.exit(1)
if args.target is not None:
chosen_target = args.target
elif 'default-target' in manifest:
chosen_target = manifest['default-target']
else:
chosen_target = manifest['targets'].keys()[0]
if chosen_target not in manifest['targets']:
log_error('Target not found in manifest:', chosen_target)
sys.exit(1)
return Manifest(program_file, language, chosen_target, manifest['targets'][chosen_target])
def run_compile_bmv2(manifest):
if 'run-before-compile' in manifest.target_config:
commands = manifest.target_config['run-before-compile']
if not isinstance(commands, list):
log_error('run-before-compile should be a list:', commands)
sys.exit(1)
for command in commands:
run_command(command)
compiler_args = []
if manifest.language == 'p4-14':
compiler_args.append('--p4v 14')
elif manifest.language == 'p4-16':
compiler_args.append('--p4v 16')
else:
log_error('Unknown language:', manifest.language)
sys.exit(1)
if 'compiler-flags' in manifest.target_config:
flags = manifest.target_config['compiler-flags']
if not isinstance(flags, list):
log_error('compiler-flags should be a list:', flags)
sys.exit(1)
compiler_args.extend(flags)
# Compile the program.
output_file = manifest.program_file + '.json'
compiler_args.append('"%s"' % manifest.program_file)
compiler_args.append('-o "%s"' % output_file)
rv = run_command('p4c-bm2-ss %s' % ' '.join(compiler_args))
if 'run-after-compile' in manifest.target_config:
commands = manifest.target_config['run-after-compile']
if not isinstance(commands, list):
log_error('run-after-compile should be a list:', commands)
sys.exit(1)
for command in commands:
run_command(command)
if rv != 0:
log_error('Compile failed.')
sys.exit(1)
return output_file
def run_mininet(manifest):
output_file = run_compile_bmv2(manifest)
# Run the program using the BMV2 Mininet simple switch.
switch_args = []
# We'll place the switch's log file in current (build) folder.
cwd = os.getcwd()
log_file = os.path.join(cwd, manifest.program_file + '.log')
print ("*** Log file %s" % log_file)
switch_args.append('--log-file "%s"' % log_file)
pcap_dir = os.path.join(cwd)
print ("*** Pcap folder %s" % pcap_dir)
switch_args.append('--pcap-dump "%s" '% pcap_dir)
# Generate a message that will be printed by the Mininet CLI to make
# interacting with the simple switch a little easier.
message_file = 'mininet_message.txt'
with open(message_file, 'w') as message:
print(file=message)
print('======================================================================',
file=message)
print('Welcome to the BMV2 Mininet CLI!', file=message)
print('======================================================================',
file=message)
print('Your P4 program is installed into the BMV2 software switch', file=message)
print('and your initial configuration is loaded. You can interact', file=message)
print('with the network using the mininet CLI below.', file=message)
print(file=message)
print('To inspect or change the switch configuration, connect to', file=message)
print('its CLI from your host operating system using this command:', file=message)
print(' simple_switch_CLI', file=message)
print(file=message)
print('To view the switch log, run this command from your host OS:', file=message)
print(' tail -f %s' % log_file, file=message)
print(file=message)
print('To view the switch output pcap, check the pcap files in %s:' % pcap_dir, file=message)
print(' for example run: sudo tcpdump -xxx -r s1-eth1.pcap', file=message)
print(file=message)
# print('To run the switch debugger, run this command from your host OS:', file=message)
# print(' bm_p4dbg' , file=message)
# print(file=message)
switch_args.append('--cli-message "%s"' % message_file)
if 'num-hosts' in manifest.target_config:
switch_args.append('--num-hosts %s' % manifest.target_config['num-hosts'])
if 'switch-config' in manifest.target_config:
switch_args.append('--switch-config "%s"' % manifest.target_config['switch-config'])
switch_args.append('--behavioral-exe "%s"' % 'simple_switch')
switch_args.append('--json "%s"' % output_file)
program = '"%s/mininet/single_switch_mininet.py"' % sys.path[0]
return run_command('python2 %s %s' % (program, ' '.join(switch_args)))
def run_multiswitch(manifest):
output_file = run_compile_bmv2(manifest)
script_args = []
cwd = os.getcwd()
log_dir = os.path.join(cwd, cwd + '/logs')
print ("*** Log directory %s" % log_dir)
script_args.append('--log-dir "%s"' % log_dir)
pcap_dir = os.path.join(cwd)
print ("*** Pcap directory %s" % cwd)
script_args.append('--manifest "%s"' % args.manifest)
script_args.append('--target "%s"' % manifest.target)
if 'auto-control-plane' in manifest.target_config and manifest.target_config['auto-control-plane']:
script_args.append('--auto-control-plane' )
script_args.append('--behavioral-exe "%s"' % 'simple_switch')
script_args.append('--json "%s"' % output_file)
#script_args.append('--cli')
# Generate a message that will be printed by the Mininet CLI to make
# interacting with the simple switch a little easier.
message_file = 'mininet_message.txt'
with open(message_file, 'w') as message:
print(file=message)
print('======================================================================',
file=message)
print('Welcome to the BMV2 Mininet CLI!', file=message)
print('======================================================================',
file=message)
print('Your P4 program is installed into the BMV2 software switch', file=message)
print('and your initial configuration is loaded. You can interact', file=message)
print('with the network using the mininet CLI below.', file=message)
print(file=message)
print('To inspect or change the switch configuration, connect to', file=message)
print('its CLI from your host operating system using this command:', file=message)
print(' simple_switch_CLI --thrift-port <switch thrift port>', file=message)
print(file=message)
print('To view a switch log, run this command from your host OS:', file=message)
print(' tail -f %s/<switchname>.log' % log_dir, file=message)
print(file=message)
print('To view the switch output pcap, check the pcap files in %s:' % pcap_dir, file=message)
print(' for example run: sudo tcpdump -xxx -r s1-eth1.pcap', file=message)
print(file=message)
# print('To run the switch debugger, run this command from your host OS:', file=message)
# print(' bm_p4dbg' , file=message)
# print(file=message)
script_args.append('--cli-message "%s"' % message_file)
program = '"%s/mininet/multi_switch_mininet.py"' % sys.path[0]
return run_command('python2 %s %s' % (program, ' '.join(script_args)))
def run_stf(manifest):
output_file = run_compile_bmv2(manifest)
if not 'test' in manifest.target_config:
log_error('No STF test file provided.')
sys.exit(1)
stf_file = manifest.target_config['test']
# Run the program using the BMV2 STF interpreter.
stf_args = []
stf_args.append('-v')
stf_args.append(os.path.join(args.build_dir, output_file))
stf_args.append(os.path.join(args.build_dir, stf_file))
program = '"%s/stf/bmv2stf.py"' % sys.path[0]
rv = run_command('python2 %s %s' % (program, ' '.join(stf_args)))
if rv != 0:
sys.exit(1)
return rv
def run_custom(manifest):
output_file = run_compile_bmv2(manifest)
python_path = 'PYTHONPATH=$PYTHONPATH:/scripts/mininet/'
script_args = []
script_args.append('--behavioral-exe "%s"' % 'simple_switch')
script_args.append('--json "%s"' % output_file)
script_args.append('--cli "%s"' % 'simple_switch_CLI')
if not 'program' in manifest.target_config:
log_error('No mininet program file provided.')
sys.exit(1)
program = manifest.target_config['program']
rv = run_command('%s python2 %s %s' % (python_path, program, ' '.join(script_args)))
if rv != 0:
sys.exit(1)
return rv
def main():
log('Entering build directory.')
os.chdir(args.build_dir)
# A '.p4app' package is really just a '.tar.gz' archive. Extract it so we
# can process its contents.
log('Extracting package.')
tar = tarfile.open(args.app)
tar.extractall()
tar.close()
log('Reading package manifest.')
with open(args.manifest, 'r') as manifest_file:
manifest = read_manifest(manifest_file)
# Dispatch to the backend implementation for this target.
backend = manifest.target
if 'use' in manifest.target_config:
backend = manifest.target_config['use']
if backend == 'mininet':
rc = run_mininet(manifest)
elif backend == 'multiswitch':
rc = run_multiswitch(manifest)
elif backend == 'stf':
rc = run_stf(manifest)
elif backend == 'custom':
rc = run_custom(manifest)
elif backend == 'compile-bmv2':
run_compile_bmv2(manifest)
rc = 0
else:
log_error('Target specifies unknown backend:', backend)
sys.exit(1)
sys.exit(rc)
if __name__ == '__main__':
main()